$8^{\text {TH }}$ GRADE MATHEMATI CS:

AI M: USI NG OHM’S LAW TO SOLVE MATH PROBLEMS

HOME WORK: HANDOUT BY MR. AKOMAH
ENCHANCI NG STUDENTS SKI LLS I N I NVERESE OPERATI ON USI NG OHMS LAW

Learning objectives : Students will...

1.Become aware of Ohm's Law, the relationship between current, voltage, and resistance in a series circuit.
2. To solve selected problems using Ohm's Law \& I nverse operation and other math concepts.
3. To study Ohm's law and its application in simple series circuits; to determine current voltage and resistance

MOTIVATI ON: HAVE A STUDENT READ THE FOLLOWING:

Ohm's Law shows the relationship between ohms, volts and amps. This lesson will help us comprehend the daily use electricity in our homes.

LESSON INTRODUCTI ON:
 HOW THIS MATH CONNECTS:

TEACHER: Explain to students the daily use of mathematics in all aspects of our lives. Draw the schematics of a circuit and explain to students how Electricians use the formulas to install the correct gauge of wire to carry the load.

Materials needed per student:

Pencil
Calculator with $\sqrt{ }$ key \& memory +/- functions
Electricity and Ohm's Law WorksheetsElectricity and Ohm's Law Example Problem handout

\square Formulas, Equations, and Laws handout and two Ohm's Law handouts
NOTE: Ohm's Law states that in a simple electrical circuit, the voltage equals the electrical current times the resistance.

$$
V=I R
$$

where:

- \mathbf{V} is the voltage in volts
- I is the current in amperes or amps
- \mathbf{R} is the resistance in ohms

Vocabulary : CURRENT, VOLTAGE, RESI STANCE

Current: Indicates the amount of electrons passing through the wire and is measured in amperes or amps for short. $\{1\}$ is the unit symbol for Amps.
EXPLAI $\mathrm{N}:$ Current is what flows in a wire or conductor like water flowing

Esticarvent = Whazei Rxsisaro down a pipe.

VOLTAGE: The force that drives electrical charges through a circuit is measured in volts. $\quad V=I R$

RESI STANCE: Determines how much current will flow through a component. Resistors are used to control. $\quad \mathbf{R}=\frac{\mathbf{V}}{\mathbf{l}}$

Teacher used training aids:

- 9 volt battery
- 18" lengths of insulated wire with clips

■ 10 ohm 0.25 watt resister
■ 220 ohm 0.5 watt resister
Problem \#1: GI VE STUDENTS TIME TO ANAYLIS THE PROBLEM (LEVEL III)
A 110 volt wall outlet supplies power to a strobe light with a resistance of $\mathbf{2 0}$ ohms. How much current is flowing through the strobe light?
SOLUTION:
$\mathrm{V}=110$ VOLTS $\quad \mathrm{R}=20$ OHMS I = ?
$V=I R$
REPLACE VARI ABLE WI TH VALUES
110 VOLTS = I (20)
$\frac{110 \text { VOLTS }}{20}=\frac{1(20)}{20}$

ANSWER: I = 5.5 Amp.

Problem \#2

A CD player with a resistance of 50 ohms has a current of $\mathbf{0 . 2}$ amps flowing through it. Sketch the circuit diagram and calculate how many volts supply the CD player.
SOLUTI ON:
$V=? \quad R=50$ ohms $\quad I=0.2$
$V=I R$
$V=50$ (0.2)
ANSWER: V = 5 Volt.
Problem \#3
A 120-volt power source supplies a lamp with a resistance of $\mathbf{2 0 0}$ ohms. What is the current flow of the circuit?
$\mathrm{V}=120$ VOLTS $\quad \mathrm{R}=20$ OHMS I = ?
$V=I R$
REPLACE VARI ABLE WITH VALUES

120 VOLTS	$=I(200)$
$\frac{120 \text { VOLTS }}{200}$	$=\frac{I(200)}{200}$

ANSWER: I = 0.75 Amp

Problem \#4

A source has a current of 0.2Amperes and a resistance $\mathbf{R}=1000$ ohms, Find the Voltage. .Solution:

$$
\begin{aligned}
& V=I R \\
& V=0.2 A(1000 \Omega)=200 V
\end{aligned}
$$

$V=200 V$

ANOTHER LESSON COMPONENT: DRAW ON BOARD AND EXPLAI N:

 EXPLAI N TO STUDENTS: Most home are wired in Series or Parallel Circuit

Resistances in Series

When resistances $R_{1}, R_{2}, R_{3}, \ldots$ are connected in series, the total resistance R_{s} is:

Resistances in Parallel
When resistances $\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{3}}, \ldots$ are connected in parallel, the total resistance $\mathbf{R}_{\mathbf{P}}$ is:
$\frac{1}{\mathbf{R}_{P}}=\frac{1}{\mathbf{R}_{1}}+\frac{1}{\mathbf{R}_{2}}+\frac{1}{\mathbf{R}_{3}}+\cdots \frac{1}{\mathbf{R}_{\mathrm{N}}}$

EXAMPLE: Find $T_{\text {he }}$ Total $R_{\text {esistance, }} C_{\text {urrent }} \& V_{\text {oltage }} A_{\text {cross }} E_{\text {ach }}$ $\mathrm{R}_{\text {ESI ITOR }}$

Solution:

$R_{S}=R_{1}+R_{2}+R_{3}+\ldots R s$
$R_{S}=3+10+5+$
$\mathrm{R}_{\mathrm{S}}=18 \mathrm{Ohms}$

$$
\begin{aligned}
& I_{\text {TOTAL }}=\frac{E_{\text {TOTAL }}}{R_{\text {TOTAL }}}=\frac{9 \mathrm{~V} .}{18} \\
& I_{\text {TOTAL }}=\frac{9 \mathrm{~V} .}{18 \mathrm{~K} \Omega}=\frac{9}{18,000}=500 \mu \mathrm{~A}
\end{aligned}
$$

$\mathrm{E}_{\mathrm{R} 1}=\mathbf{I}(\mathbf{R 1})$	$\mathrm{E}_{\mathrm{R} 2}=\mathbf{I}(\mathbf{R 2}$)	$\mathrm{E}_{\mathbf{R} 3}=\mathbf{I}\left(\mathbf{R}_{3}\right)$
$\mathrm{E}_{\mathrm{R} 1}=500 \mu \mathrm{~A}(3 \mathrm{~K} \Omega)$	$\mathrm{E}_{\mathrm{R} 2}=500 \mu \mathrm{~A}(10 \mathrm{~K} \boldsymbol{\Omega})$	$\mathrm{E}_{\mathrm{R} 3}=500 \mu \mathrm{~A}(5 \mathrm{~K} \boldsymbol{\Omega})$
$\mathrm{E}_{\mathrm{R} 1}=500 \mu \mathrm{~A}(3000)$	$\mathrm{E}_{\mathrm{R} 2}=500 \mu \mathrm{~A}(1000 \Omega)$	ER3 $=500 \mu \mathrm{~A}(5000 \Omega)$
$\mathrm{E}_{\mathrm{R1}}=1.5$ VOLTS	$\mathrm{E}_{\mathrm{R} 2}=$ 5VOLTS	$\mathrm{E}_{\mathrm{R} 3}=500 \mu \mathrm{~A}(5000 \Omega)$

$I_{\text {battery }}=I_{\mathbf{1}}=I_{\mathbf{2}}=I_{\mathbf{3}}$

$$
\Delta \mathbf{V}_{1}=\mathbf{I}_{1} \cdot \mathbf{R}_{\mathbf{1}}
$$

$$
\Delta V_{1}=(1.5 \mathrm{~A}) \cdot(17 \Omega)
$$

$$
\Delta V_{1}=25.5 \mathrm{~V}
$$

FIND THE TOTAL RESISTOR, TOTAL CURRENT, EACH CURRENT, AND EACH VOLTAGE ACROSS EACH RESISTOR:
.SOLUTION: $R_{\text {eq }}=R_{1}+R_{\mathbf{2}}+R_{3}=17 \Omega+12 \Omega+11 \Omega=40 \Omega$ $I_{\text {tot }}=\Delta V_{\text {battery }} / R_{\text {eq }}=(60 \mathrm{~V}) /(40 \Omega)=1.5 \mathrm{amp}$
$=1.5 \mathrm{amp}$
$\Delta V_{2}=I_{2} \cdot R_{2}$
$\Delta V_{2}=(1.5 A) \cdot(12 \Omega)$
$\Delta V_{2}=18 \mathrm{~V}$

$$
\Delta V_{3}=I_{3} \cdot R_{3}
$$

$$
\Delta V_{3}=(1.5 \mathrm{~A}) \cdot(11 \Omega)
$$

$$
\Delta V_{3}=16.5 \mathrm{~V}
$$

FI ND THE TOTAL RESISTOR, TOTAL CURRENT, EACH CURRENT, AND EACH VOLTAGE ACROSS EACH RESISTOR:
.SOLUTION

$$
I_{\text {tot }}=\frac{\Delta V_{\text {batter }}}{R_{\text {eq }}}=\frac{60 \mathrm{~V}}{4.29063 \Omega}
$$

$$
I_{\text {tot }}=14.0 \mathrm{amp}
$$

$$
\begin{array}{ccc}
I_{1}=\Delta V_{1} / R_{1} & \Delta V_{2}=\Delta V_{2} / R_{2} & \Delta V_{3}=\Delta V_{3} / R_{3} \\
I_{1}=(60 \mathrm{~V}) /(17 \Omega) & I_{2}=(60 \mathrm{~V}) /(12 \Omega) & I_{3}=(60 \mathrm{~V}) /(11 \Omega) \\
I_{1}=3.53 \mathrm{amp} & I_{2}=5.00 \mathrm{amp} & I_{3}=5.45 \mathrm{amp}
\end{array}
$$

$\Delta V_{\text {battery }}=\Delta V_{1}$

$$
=\Delta V_{2}={ }_{\Delta} V_{3}
$$

$$
=60 \mathrm{~V}
$$

FIND THE TOTAL RESISTANCE OF THE CIRCUIT

SOLUTION:

1	1	1	1	
--	-	+-	+	--
RT	R1	R2	R3	
1	1	1	1	

-- = -- + -- + -- = 1 OHM
$R_{T} 4 \quad 4 \quad 2$

Extensions

Students will solve problems with circuits dealing with series and parallel circuits.

A series-parallel combination circuit

Summary: Ohm's Law is the equation $\mathrm{V}=\mathrm{I} \mathrm{R}$ that shows the relationship between voltage, current and resistance in a simple electrical circuit. It applies both the AC and DC circuits.

$$
R_{\text {equivalent }}=R_{1}+R_{2}+R_{3}+\ldots
$$

$$
R_{\text {equavaleme }}=\frac{V}{I}=\frac{V_{1}+V_{2}+V_{3}+\ldots}{I}=\frac{V_{1}}{I_{1}}+\frac{V_{2}}{I_{2}}+\frac{V_{3}}{I_{3}}+\ldots=R_{1}+R_{2}+R_{3}+\ldots
$$

Series key idea: The current is the same in each resistor by the current law.

$$
\frac{1}{R_{\text {equivalent }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

Parallel: $\quad \frac{V}{R_{\text {equivalent }}}=I=I_{1}+I_{2}+I_{2}+\ldots=\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}+\ldots$

$$
\frac{1}{R_{\text {equivalery }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

Parallel key iclea:The voltage is the same across each resistor by the voltage law.

HANDOUT:

HOME WORK: BY MR. A. AKOMAH \{PLEASE SHOW YOUR STEPS\}

1. The unit of electrical pressure is the \qquad .
2. The unit of electrical current is the \qquad .
3. The unit of electrical resistance is the \qquad .
4. The current in a circuit is
(a) \qquad proportional to the applied voltage.
(b) \qquad proportional to the resistance.
5. The relation between current, voltage and resistance in a circuit is expressed by the equation
Amperes \qquad .
6. If a generator supplies $\mathbf{6 0}$ volts across a resistor and a current of $\mathbf{1 0}$ amperes flows through the circuit, what is the ohmic value of the resistor?
7. A generator is supplying 120 volts to a circuit which comprises two resistances, 6 ohms and 4 ohms, in series. What is the current flowing in the circuit?
8. What voltage must a generator have to produce a current of 6 amperes through resistances of 2 ohms, $\mathbf{3}$ ohms, and 5 ohms connected in series?
9. Four resistors, of $\mathbf{8}$ ohms, $\mathbf{6}$ ohms, $\mathbf{2}$ ohms and one of unknown resistance, are connected in series. A generator supplies 120 volts across this circuit. The IR-drop across the $\mathbf{6}$-ohm resistance is $\mathbf{3 6}$ volts. (a) What current is flowing in the circuit? (b) What is the total circuit resistance? (c) What ohmic value has the unknown resistor?
10. A generator supplies 100 volts to $\mathbf{3}$ resistors in series, whose resistances are $\mathbf{2}$ ohms, 3 ohms and 5 ohms. (a) What current flows in the circuit? (b) What is the current in each resistor?

ANSWERS : TO THE ABOVE

1. volt
2. Ampere
3. Ohm
4. (a) directly
(b) inversely
5. volts/ ohms 6.6 ohms 7.12 amperes 8.60 volts 9 . (a) I = 6 amperes
(b) $R_{t}=20$ ohms
(c) $R_{x}=200 \mathrm{hms}$
6. (a) I =10amperes
(b) I =10 amperes

EXAMPLE :

Voltage $=10 \mathrm{~V}$
R1 = $4 \mathbf{O h m}$
R2 $=40 \mathrm{Ohm}$
R3 $=2 \mathbf{O h m}$

Remember that 'Rt' means Total resistance of the circuit.
R1, R2, etc. are Resistor one, Resistor two, etc.

Now we will apply the formula above to this example:
$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$
-- = -- + -- + --
Rt R1 R2 R3
Therefore:
$\begin{array}{llll}1 & 1 & 1\end{array}$
-- = -- + -- + --
Rt 442
It is easiest to change the fractions into decimal numbers (example 1 divide by 4 equals .25):
$1 / R t=.25+.25+.5$
$\mathbf{1} / \mathbf{R t}=\mathbf{1}$
Now you have to get rid of the 1 on the left side so...
$\mathbf{R t}=\mathbf{1} / \mathbf{1}$
$\mathbf{R t}=\mathbf{1 0 h m}$

NOW, Let's try a more complex one:
Voltage $=120$ Volts
R1 = 100 Ohms
$\mathbf{R 2}=\mathbf{2 0 0}$ Ohms
R3 $=1000$ Ohms
R4 = $\mathbf{1}$ Ohms
1/Rt $=\mathbf{1} / 100+\mathbf{1} / \mathbf{2 0 0}+\mathbf{1} / \mathbf{1 0 0 0}+\mathbf{1} / \mathbf{1}$
$1 / R t=.01+.005+.001+1$
$1 / R t=1.016$
$R t=1 / 1.016=.98$ Ohms

